The Minimum Error Minimax Probability Machine
نویسندگان
چکیده
We construct a distribution-free Bayes optimal classifier called the Minimum Error Minimax Probability Machine (MEMPM) in a worst-case setting, i.e., under all possible choices of class-conditional densities with a given mean and covariance matrix. By assuming no specific distributions for the data, our model is thus distinguished from traditional Bayes optimal approaches, where an assumption on the data distribution is a must. This model is extended from the Minimax Probability Machine (MPM), a recently-proposed novel classifier, and is demonstrated to be the general case of MPM. Moreover, it includes another special case named the Biased Minimax Probability Machine, which is appropriate for handling biased classification. One appealing feature of MEMPM is that it contains an explicit performance indicator, i.e., a lower bound on the worst-case accuracy, which is shown to be tighter than that of MPM. We provide conditions under which the worst-case Bayes optimal classifier converges to the Bayes optimal classifier. We demonstrate how to apply a more general statistical framework to estimate model input parameters robustly. We also show how to extend our model to nonlinear classification by exploiting kernelization techniques. A series of experiments on both synthetic data sets and real world benchmark data sets validates our proposition and demonstrates the effectiveness of our model.
منابع مشابه
Selection Based on Minimum Error 5 Minimax Probability Machine
Feature selection is an important task in pattern recognition. Support Vector Machine (SVM) and Minimax Probability Machine (MPM) have been successfully used as the 15 classification framework for feature selection. However, these paradigms cannot automatically control the balance between prediction accuracy and the number of selected 17 features. In addition, the selected feature subsets are a...
متن کاملRobust Minimax Probability Machine Regression Robust Minimax Probability Machine Regression
We formulate regression as maximizing the minimum probability (Ω) that the true regression function is within ±2 of the regression model. Our framework starts by posing regression as a binary classification problem, such that a solution to this single classification problem directly solves the original regression problem. Minimax probability machine classification (Lanckriet et al., 2002a) is u...
متن کاملA Formulation for Minimax Probability Machine Regression
We formulate the regression problem as one of maximizing the minimum probability, symbolized by Ω, that future predicted outputs of the regression model will be within some ±ε bound of the true regression function. Our formulation is unique in that we obtain a direct estimate of this lower probability bound Ω. The proposed framework, minimax probability machine regression (MPMR), is based on th...
متن کاملRobust Minimax Probability Machine Regression ; CU-CS-952-03
We formulate regression as maximizing the minimum probability (Ω) that the true regression function is within ±2 of the regression model. Our framework starts by posing regression as a binary classification problem, such that a solution to this single classification problem directly solves the original regression problem. Minimax probability machine classification (Lanckriet et al., 2002a) is u...
متن کاملAdmissible and Minimax Estimator of the Parameter $theta$ in a Binomial $Bin( n ,theta)$ distribution under Squared Log Error Loss Function in a Lower Bounded Parameter Space
Extended Abstract. The study of truncated parameter space in general is of interest for the following reasons: 1.They often occur in practice. In many cases certain parameter values can be excluded from the parameter space. Nearly all problems in practice have a truncated parameter space and it is most impossible to argue in practice that a parameter is not bounded. In truncated parameter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 5 شماره
صفحات -
تاریخ انتشار 2004